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Abstract

Diffusion models are trained by learning a sequence of
models that reverse each step of noise corruption. Typi-
cally, the model parameters are fully shared across multi-
ple timesteps to enhance training efficiency. However, since
the denoising tasks differ at each timestep, the gradients
computed at different timesteps may conflict, potentially de-
grading the overall performance of image generation. To
solve this issue, this work proposes a Decouple-then-Merge
(DeMe) framework, which begins with a pretrained model
and finetunes separate models tailored to specific timesteps.
We introduce several improved techniques during the fine-
tuning stage to promote effective knowledge sharing while
minimizing training interference across timesteps. Finally,
after finetuning, these separate models can be merged into a
single model in the parameter space, ensuring efficient and
practical inference. Experimental results show significant
generation quality improvements upon 6 benchmarks in-
cluding Stable Diffusion on COCO30K, ImageNet1K, Par-
tiPrompts, and DDPM on LSUN Church, LSUN Bedroom,
and CIFAR10. Code is available at GitHub.

1. Introduction

Generative modeling has seen significant progress in re-
cent years, primarily driven by the development of Diffu-
sion Probabilistic Models (DPMs) [15, 33, 41]. These mod-
els have been applied to various tasks such as text-to-image
generation [40], image-to-image translation [43], and video
generation [2, 16], yielding excellent performance. Com-
pared with other generative models such as variational auto-
encoders (VAEs) [21], and generative adversarial networks
(GANs) [11], the most distinct characteristic of DPMs is
that DPMs need to learn a sequence of models for denois-
ing at multiple timesteps. Training the neural network to fit
this step-wise denoising conditional distribution facilitates
tractable, stable training and high-fidelity generation.

The denoising tasks at different timesteps are similar yet
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Figure 1. (a) Cosine similarity between gradients at different
timesteps on CIFAR10 & distribution of gradients similarity in
t ∈ [0, 1000] and t ∈ [0, 250]. Non-adjacent timesteps have low
similarity, indicating conflicts during their training. In contrast,
adjacent timesteps have similar gradients. (b) & (c): Comparison
between the traditional and our training paradigm: The previous
paradigm trains one diffusion model on all timesteps, leading to
conflicts in different timesteps. Our method addresses this prob-
lem by decoupling the training of diffusion models in N different
timestep ranges.

different. On the one hand, the denoising tasks at differ-
ent timesteps are similar in the sense that the model takes
a noisy image from the same space as input and performs
a denoising task. Intuitively, sharing knowledge between
these tasks might facilitate more efficient training. There-
fore, typical methods let the model take both the noisy im-
age xt and the corresponding timestep t as input, and share
the model parameter across all timesteps. On the other
hand, the denoising tasks at different timesteps have clear
differences as the input noisy images are from different dis-
tributions, and the concrete “denoising” effect is also dif-
ferent. Li et al. [25] demonstrate that there is a substan-
tial difference between the feature distributions in differ-
ent timesteps. Fang et al. [8] show that the larger (noisy)
timesteps tend to generate the low-frequency and the basic
image content, while the smaller timesteps tend to generate
the high-frequency and the image details.

We further study the conflicts of different timesteps dur-
ing the training of the diffusion model. Fig. 1(a) shows the
gradient similarity of different timesteps. We can observe
that the diffusion models have dissimilar gradients at dif-

https://github.com/MqLeet/DeMe


ferent timesteps, especially the non-adjacent timesteps, in-
dicating a conflict between the optimization direction from
different timesteps, as shown in Fig. 1(b). In one word,
this gradient conflict indicates that different denoising tasks
might have a negative interference with each other during
training, which may harm the overall performance.

Considering the similarity as well as difference of these
denoising tasks, the next natural and crucial question is
“how can we promote effective knowledge sharing as well
as avoid negative interference between multiple denoising
tasks?”. Timestep-wise model ensemble [1, 28] solves this
problem by training and inferring multiple different diffu-
sion models at various timesteps to avoid negative interfer-
ence, though introducing huge additional storage and mem-
ory overhead. For instance, Liu et al. [28] employs 6 dif-
fusion models during inference, leading to around 6× in-
crease in storage and memory requirements, which renders
the method impractical in application. Additionally, vari-
ous loss reweighting strategies [13, 46] solve this problem
by balancing different denoising tasks and mitigating nega-
tive interference. However, it may alleviate but can not truly
solve the gradient conflicts in different timesteps.

In this work, considering the challenges faced by
timestep-wise model ensemble and loss reweighting, we
propose Decouple-then-Merge (DeMe), a novel finetuning
framework for diffusion models that achieves the best side
of both worlds: mitigated training interference across dif-
ferent denoising tasks and inference without extra over-
head. DeMe begins with a pretrained diffusion model
and then finetunes its separate versions tailored to no-
overlapped timestep ranges to avoid the negative inter-
ference of gradient conflicts. Several training techniques
are introduced during this stage to preserve the benefits
of knowledge sharing in different timesteps. Then, the
post-finetuned diffusion models are merged into a single
model in their parameter space, enabling effective knowl-
edge sharing across multiple denoising tasks. Specifically,
as shown in Fig. 1(c), we divide the overall timestep range
[0, T ) into multiple adjacent timestep ranges with no over-
lap as {[(i−1)T/N, iT/N)}Ni=1, where T denotes the maxi-
mal timestep and N denotes the number of timestep ranges.
Then, we finetune a pretrained diffusion model for each
timestep range by only training it with the timesteps in-
side this range. As a result, we decouple the training of
diffusion models at different timesteps. The gradients of
different timesteps will not be accumulated together and
their conflicts are naturally avoided. Besides, as shown
in Fig. 3, we further introduce three simple but effective
techniques during the finetuning stage, including Consis-
tency Loss and Probabilistic Sampling to preserve the bene-
fits from knowledge sharing across different timesteps, and
Channel-wise Projection that directly enables the model to
learn the channel-wise difference in different timesteps.
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Figure 2. Visualization of the difference between the pre-finetuned
and the post-finetuned diffusion model on the channel and spa-
tial dimensions. We computed the difference in activation values
before/after finetune along the channel and spatial dimensions of
the image. (a) Visualization of channel activation, spatial activa-
tion, and their difference between the pre-finetuned and the post-
finetuned model. (b) Distribution of difference for channel activa-
tion and spatial activation values. It can be observed that activation
values vary mostly in channel dimensions during finetuning on
a subset of timesteps.

After the finetuning stage, we obtain N diffusion mod-
els learned the knowledge in N different timesteps ranges,
which also lead to N times costs in storage and memory.
Then, we eliminate the additional costs by merging all these
N models into a single model in their parameter space with
the model merging technique [17]. In this way, the ob-
tained merged model has the same computation and param-
eter costs as the original diffusion model while maintaining
the knowledge from the N finetuned model, which indicates
a notable improvement in generation quality.

Extensive experiments on 6 datasets have verified the
effectiveness of DeMe for both unconditional and text-to-
image generation. In summary, our contributions can be
summarized as follows.
• We propose to decouple the training of diffusion mod-

els by finetuning multiple diffusion models in different
timestep ranges. Three simple but effective training tech-
niques are introduced to promote knowledge sharing be-
tween multiple denoising tasks in this stage.

• We propose to merge multiple finetuned diffusion models,
each specialized for different timestep ranges, into a sin-
gle diffusion model, which significantly enhances gener-
ation quality without any additional costs in computation,
storage, and memory access. To the best of our knowl-
edge, we are the first to merge diffusion models across
different timesteps.

• Abundant experiments have been conducted on six
datasets for both unconditional and text-to-image gener-
ation, demonstrating significant improvements in genera-
tion quality.
We note that our framework of combining task-specific

training with parameter-space merging offers a novel
method for multi-task learning, distinct from existing loss-
balancing techniques [18, 48], and can be potentially ex-
tended to general multi-task scenarios.



2. Related Work
Diffusion Models. Diffusion models [6, 15, 33, 50, 52]
represent a family of generative models that generate sam-
ples via a progressive denoising mechanism, starting from
a random Gaussian distribution. Given that diffusion mod-
els suffer from slow generation and heavy computational
costs, previous works have focused on improving diffu-
sion models in various aspects, including model architec-
tures [36, 41], faster sampler [29, 30, 51], prediction type
and loss weighting [3, 10, 13, 46]. Besides, a few works
have attempted to accelerate diffusion models generation
through pruning [7], quantization [26, 49] and knowledge
distillation [19, 31, 32, 46], which have achieved significant
improvement on the efficiency. Motivated by the excellent
generative capacity of diffusion models, diffusion models
have been developed in several applications, including text-
to-image generation [39, 41, 44], video generation [2, 16],
image restoration [45], natural language generation [24],
audio synthesis [22], 3D content generation [37], ai4science
such as protein structure generation [55], among others.
Training of Diffusion Models & Multi-task Learning.
Multi-task Learning (MTL) is aimed at improving gen-
eralization performance by leveraging shared information
across related tasks. The objective of MTL is to learn mul-
tiple related tasks jointly, allowing models to generalize
better by learning representations that are useful for nu-
merous tasks [4]. Despite its success in various applica-
tions, MTL faces significant challenges, particularly nega-
tive transfer [4, 53], which can degrade the performance of
individual tasks when jointly trained. The training paradigm
of diffusion models could be viewed as a multi-task learn-
ing problem: diffusion models are trained by learning a
sequence of models that reverse each step of noise cor-
ruption across different noise levels. A parameter-shared
denoiser is trained on different noise levels concurrently,
which may cause performance degradation due to nega-
tive transfer—a phenomenon where learning multiple de-
noising tasks jointly hinders performance due to conflicts
in timestep-specific denoising information. Previous works
reweight training loss on different timesteps, improving dif-
fusion model performance [3, 10, 15, 46] or accelerating
training convergence [13]. Go et al. analyze and improve
the diffusion model by exploring task clustering and ap-
plying various MTL methods to diffusion model training.
Kim et al. analyze the difficulty of denoising tasks and pro-
pose a novel easy-to-hard learning scheme for progressively
training diffusion models. DMP [12] integrates timestep
specific learnable prompts into pretrained diffusion mod-
els, thereby enhancing their performance and enabling more
effective optimization across different stages of training.
Some works also reinterpret diffusion models using MTL
and propose architectural improvements, such as DTR [34]
and Switch-DiT [35]. Different from [10], we propose

to decouple the training of diffusion models by finetuning
multiple diffusion models in different timestep ranges, and
merge these models in the parameter space to mitigate gra-
dient conflicts between timesteps.

3. Methodology

3.1. Preliminary

The fundamental concept of diffusion models is to generate
images by progressively applying denoising steps, starting
from random Gaussian noise xT , and gradually transform-
ing it into a structured image x0. Diffusion models con-
sist of two phases: the forward process and the reverse pro-
cess. In the forward process, a data point x0 ∼ q(x) is ran-
domly sampled from the real data distribution, then gradu-
ally corrupted by adding noise step-by-step q(xt | xt−1) =
N (xt;

√
1− βtxt−1, βtI), where t is the current timestep

and βt is a pre-defined variance schedule that schedules the
noise. In the reverse process, diffusion models transform a
random Gaussian noise xT ∼ N (0, I) into the target dis-
tribution by modeling conditional probability q(xt−1 | xt),
which denoises the latent xt to get xt−1. Formally, the con-
ditional probability pθ(xt−1 | xt) can be modeled as:

N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, βtI

)
, (1)

where αt = 1 − βt, ᾱt =
∏T

i=1 αi. ϵθ denotes a noise
predictor, which is usually an U-Net [42] autoencoder in
diffusion models, with current timestep t and previous latent
xt as input. It is usually trained with the objective function:

Lθ = Et∼U [0,T ],x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθ (xt, t)∥2

]
, (2)

where T denotes the number of timesteps and U denotes a
uniform distribution. After training, a clean image x0 can be
obtained via an iterative denoising process from the random
Gaussian noise xT ∼ N (0, I) with the modeled distribution
xt−1 ∼ pθ(xt−1 | xt) in Equation 1.

3.2. Decouple the Training of Diffusion Model

In this section, we demonstrate how to decouple the training
of diffusion model. As illustrated in Fig. 1(c), we first di-
vide the timesteps of [0, T ) into N multiple continuous and
non-overlapped timesteps ranges, which can be formulated
as {[(i−1)T/N, iT/N)}Ni=1. Subsequently, based on a diffu-
sion model pretrained by Equation 1, we finetune a group
of N diffusion models {ϵθi}Ni=1 on each of the N timestep
ranges. The training objective of ϵθi which can be formu-
lated as

Et∼U [(i−1)T/N,iT/N],x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθi (xt, t)∥2

]
.

(3)
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Figure 3. Pipeline of our framework. The following training techniques are incorporated into the finetuning process: Consistency loss
preserves the original knowledge of diffusion models learned at all timesteps by minimizing the difference between pre-finetuned and
post-finetuned diffusion models. Probabilistic sampling strategy samples from both the corresponding and other timesteps with different
probabilities, helping the diffusion model overcome forgetting knowledge from other timesteps. Channel-wise projection enables the
diffusion model to directly capture the feature difference in channel dimension. Model merging scheme merges the parameters of all the
finetuned models into one unified model to promote the knowledge sharing across different timestep ranges.

However, although Equation 3 can decouple the training
of the diffusion model in different timesteps and avoid the
negative interference between multiple denoising tasks, it
also eliminates the positive benefits of learning from dif-
ferent timesteps, which may make the finetuned diffusion
model overfit a specific timestep range and lose its knowl-
edge in the other timesteps. Besides, it is also challenging
for the diffusion model to capture the difference in different
timesteps during finetuning. To address these problems, we
further introduce the following techniques shown in Fig. 3.
Channel-wise Projection. Fig. 2 shows the difference
between the pre-finetuned and the post-finetuned diffusion
models, demonstrating that there is a significant difference
in the channel dimension instead of the spatial dimension,
which further implies that the knowledge learned during
finetuning in a timestep range is primarily captured by
channel-wise mapping instead of spatial mapping. Based
on this observation, we further apply a channel-wise pro-
jection layer to facilitate the training process by directly for-
mulating the channel-wise mapping. Let Ft ∈ RC×H×W

denote the intermediate feature map of the noise predictor
ϵθ(xt, t) at the timestep t, where C,H,W denote the num-
ber of channels, height, and width of the feature map Ft,
respectively. The channel-wise projection is designed as
P(Ft) = W · Ft, where W ∈ RC×C is a learnable projec-
tion matrix that enables the diffusion model to directly cap-
ture the feature difference in the channel dimension. Please
note that we initialize W as an identity matrix to stabilize
the training process. It is worth noting that the parameter
of channel-wise projection layer is small, accounting for
1.06% of the diffusion model.
Consistency Loss. A consistency loss is introduced into
the training process to minimize the difference between

the pre-finetuned and post-finetuned diffusion model, which
can be formulated as

Et∼U [(i−1)T/N,iT/N]

[
∥ϵθ (xt, t)− ϵθi (xt, t) ∥2

]
, (4)

where ϵθ (xt, t) denotes the output of the original diffusion
model. ϵθi (xt, t) denotes the output of ith post-finetuned
diffusion model. Minimizing the consistency loss preserves
the initial knowledge of the diffusion model, and ensures
that the finetuned diffusion models do not differ signifi-
cantly from the pre-finetuned diffusion model. Besides,
the consistency loss also enhances the stability of the train-
ing process for finetuning diffusion models in the timestep
range. Combining Equation 3 and Equation 4, we can de-
rive the overall loss:

Et∼U [(i−1)T/N,iT/N],x0∼q(x),ϵ∼N (0,1)[
∥ϵ− ϵθi (xt, t)∥2 + ∥ϵθ (xt, t)− ϵθi (xt, t) ∥2

]
.

(5)

Probabilistic Sampling. To further preserve the ini-
tial knowledge learned at all the timesteps, we design a
Probabilistic Sampling strategy which enables the finetuned
model to mainly learn from its corresponding timestep
range, but still possible to preserve the knowledge in the
other timestep ranges. Concretely, during the finetuning of
ith diffusion model, we sample t from the timestep range
[(i−1)T/N, iT/N) with a probability of 1−p, while sampling
from the overall range [0, T ) with a probability p. The over-
all sampling strategy can be expressed as follows:

t ∼

[(i−1)T/N, iT/N) , i ∈ [1, N ] with probability 1− p,

[0, T ) with probability p.
(6)
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Figure 4. Loss landscape of the pretrained diffusion model in different timestep ranges on CIFAR10. We use dimension reduction methods
to handle high-dimensional neural networks. Contour line density reflects the frequency of loss variations (i.e., gradients), with blue
representing low loss and red representing high loss. The pretrained model resides at the critical point (with zero gradients) with sparse
contour lines for the overall timesteps t ∈ [0, 1000), but when the training process is decoupled, it tends to be located in regions with
densely packed contour lines, suggesting that there still exists gradients that enable pretrained model to escape from the critical point.

3.3. Merging Models in Different Timestep Ranges

After finetuning N diffusion models in their corresponding
timesteps, it is a natural step to ensemble these finetuned
diffusion models in inference stage. The sampling process
under a timestep-wise model ensemble scheme is achieved
by inferring each post-finetuned diffusion model in its cor-
responding timestep range, which can be formulated as

pθ(xt−1 | xt)

= N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθi(xt, t)

)
, βtI

)
,

(7)
where i = ⌊t×N/T⌋. For instance, the ith finetuned diffu-
sion model is only utilized in timestep t ∈ [(i−1)T/N, T/N).
This inference scheme does not introduce additional com-
putation costs during the inference period but does in-
cur additional storage costs. Since model merging meth-
ods [17, 54] can integrate diverse knowledge from each
model, we propose to merge multiple finetuned diffusion
models into a single diffusion model, which avoids addi-
tional computation or storage costs during inference while
significantly improving generation quality.

Model Merging Scheme. Fig. 3 shows the overview of the
model merge scheme. Inspired by model merging meth-
ods [17, 54] that aim to merge the parameters of mod-
els finetuned in different datasets and tasks, we propose to
merge multiple post-finetuned diffusion models. Specifi-
cally, we first compute the task vectors of different post-
finetuned diffusion models, which indicates the difference
in their parameters compared with the pre-finetuned ver-
sion. The task vector τi of the ith finetuned diffusion model
can be denoted as τi = θi − θ, where θ and θi denote the
parameters of the pre-finetuned and the ith post-finetuned
diffusion model. Following previous work [17], the model
merging can be achieved by adding all the task vectors to

the pre-finetuned model, which can be formulated as

θmerged = θ +
∑N

i=1
wiτi, where τi = θi − θ, (8)

where wi means merging weights of task vectors. We use
grid search algorithm to obtain the optimal combination of
wi. In this scheme, we finally obtain θmerged which can be
applied across all timesteps in [0, T ), following the same
inference process as in traditional diffusion models. As
a result, the model merge scheme also leads to significant
enhancement in generation quality without introducing any
additional costs in computation or storage during inference.

4. Experiments

4.1. Experiment Setting

Datasets and Metrics. For unconditional image gener-
ation datasets CIFAR10 [23], LSUN-Church, and LSUN-
Bedroom [56], we generated 50K images for evalua-
tion. For text-to-image generation, following the previous
work [19], we finetune each model on a subset of LAION-
Aesthetics V2 (L-Aes) 6.5+ [47] and test model’s capacity
of zero-shot text-to-image generation on MS-COCO val-
idation set [27], ImageNet1K [5] and PartiPrompts [57].
Fréchet Inception Distance [14] is used to evaluate the qual-
ity of generated images. CLIP score computed by CLIP-
ViT-g/14 [38] is used to evaluate the text-image alignment.
Baselines. We choose some loss reweighting methods
as baselines for comparison: SNR+1, truncated SNR [46],
Min-SNR-γ [13], P2 weighting [3]. We also select
ANT [10] to apply MTL methods to different timestep in-
tervals for comparison. We prove that the aforementioned
diffusion loss weights can be unified under the same predic-
tion target with different weight forms(Proof in supplemen-
tary material). We also demonstrate that our decouple-then-
merge framework can be formally transformed into the loss
reweighting framework (proof in supplementary material).
To ensure a fair comparison, the baseline models are trained
with an equal number of iterations with our training frame-



Table 1. Quantitative results (FID, lower is better) on CIFAR10,
LSUN-Church, and LSUN-Bedroom with DDPM. Numbers in the
brackets indicate the FID difference compared with DDPM.

Method CIFAR10 LSUN-Church LSUN-Bedroom #Iterations

Before-finetuning [15] 4.42 10.69 6.46 -

SNR+1 [46] 5.41 10.80 6.41 80K
Trun-SNR [46] 4.49 10.81 6.42 80K
Min-SNR-γ [13] 5.77 10.82 6.41 80K
P2 Weighting [3] 5.63 10.77 6.53 80K
ANT-NashMTL [10] 4.24 10.45 6.43 80K
ANT-UW [10] 4.21 10.43 6.48 80K

DeMe (Before Merge) 3.79 (−0.63) 9.57 (−1.12) 5.87 (−0.59) 20K×4
DeMe (After Merge) 3.51 (−0.91) 7.27 (−3.42) 5.84 (−0.62) 20K×4

work. Additionally, we also ensemble finetuned diffusion
models and compare them with the merging scheme for a
more detailed comparison. Please refer to the supplemen-
tary material for details on the implementation.

4.2. Quantitative Study

Results on Unconditional Generation. Table 1 presents
quantitative results on unconditional generation, demon-
strating great improvement in generation quality across
various unconditional image generation benchmarks. The
model merging scheme achieves performance comparable
to, or even better than, the ensemble scheme with a unified
diffusion model, highlighting the superiority of the merging
approach. Concretely, 0.63, 1.12, and 0.59 FID reduction
can be observed on CIFAR10, LSUN-Church, and LSUN-
Bedroom with the model ensemble scheme, respectively.
The model merging scheme leads to 0.91, 3.42, and 0.62
FID reductions on CIFAR10, LSUN-Church, and LSUN-
Bedroom, respectively. In contrast, previous loss weight-
ing methods obtain very few FID reductions under the same
finetuning setting and even harm the generation quality dur-
ing fine-tuning.

Results on Text-to-Image Generation. Table 2 shows that
DeMe outperforms the baselines in both image quality and
text-image alignment, as demonstrated by the experiment
results on text-to-image generation benchmarks for Stable
Diffusion [41]. Specifically, on MS COCO, our ensem-
ble method achieves a 0.64 FID reduction and a 0.03 CLIP
score reduction, while merging method yields a 0.36 FID
reduction along with a 0.23 CLIP score increase. On Ima-
geNet1k, ensemble method results in a 1.26 FID reduction
and a 0.17 CLIP score reduction, whereas merging method
produces a 0.39 FID reduction and a 0.02 CLIP score in-
crease. Additionally, on PartiPrompts, both the ensemble
and merging schemes show improvements in CLIP score,
with increases of 0.24 and 0.20, respectively. These results
validate the effectiveness of DeMe, showing significant im-
provements in both image quality and text-image alignment.

Before Finetuning After Finetuning

Prompt Ⅰ: “A graceful white horse galloping through a 

field of wildflowers, its mane flowing in the wind as the 

sun sets behind it.” 

Before Finetuning: Loss of text-image alignment: as the sun sets behind it 
After Finetuning: Superb text-image alignment, lifelike horse

Prompt Ⅱ: “A tropical beach with crystal-clear turquoise water 

gently lapping against white sandy shores, tall palm trees 

swaying in the breeze under a clear blue sky.” 

Before Finetuning: Loss of text-image alignment: white sandy shores

After Finetuning: Superb text-image alignment, excellent coastal view

Prompt Ⅲ: “A dolphin leaping out of the ocean in perfect 

harmony, water splashing around it as the sun sets on the 

horizon, casting a golden glow on the sea.” 

Before Finetuning: Loss of text-image alignment: sun sets on the horizon.. 
After Finetuning: Superb text-image alignment, photorealistic illustration

Prompt Ⅳ: “A foggy morning in a quiet countryside, a small 

wooden cabin surrounded by wildflowers and tall grass, the sun 

just beginning to rise through the mist.” 

Before Finetuning: Loss of text-image alignment: a small wooden cabin 
After Finetuning: Superb text-image alignment, serene landscape 

Before Finetuning After Finetuning

Figure 5. Qualitative comparison between DeMe and the original
Stable Diffusion on various prompts. More images based on vari-
ous text prompts could be found in supplementary material.

4.3. Qualitative Study

Fig. 5 depicts some fancy generated images given detailed
prompts, which illustrates that our method effectively gen-
erates images that align with the provided text descrip-
tions, resulting in generated images that are both more de-
tailed and photorealistic. Prompts highlighted in bold in-
dicate where Stable Diffusion fails to align the image with
the text, whereas our method generates images with bet-
ter text-image alignment. For example, in the middle im-
age pair of Fig. 5, Stable Diffusion fails to generate a
small wooden cabin in the image, while our method suc-
cessfully captures the subject and preserves the detailed in-
formation described in the prompt. The finetuned Stable
Diffusion model demonstrates an improved ability to gener-
ate visually coherent and contextually accurate images that
closely match the nuances of the prompts, as highlighted
in the comparison between before- and after-finetuning re-
sults, showcasing its enhanced capacity for text-to-image
synthesis. More figures based on various text prompts could
be found in supplementary material. Besides, we also pro-
vide images generated on LSUN in supplementary material.

4.4. Ablation Study

Our framework applies three training techniques to finetune
diffusion model in different timesteps. As shown in Ta-
ble 3, we conducted ablation studies on training techniques
individually. All experiments are conducted on CIFAR10,
with a 100-step DDIM sampler [51]. Several key observa-
tions can be made: (i) The traditional training paradigm re-
sults in the poorest performance. With N set to 1 and none
of the specialized training techniques applied-following the
traditional diffusion training paradigm—the model yields a
poor results, with a FID of 4.40. Gradient conflicts lead to
negative interference across different denoising tasks, ad-
versely affecting overall training. (ii) Channel-wise pro-



Table 2. Quantitative studies on MS COCO, PartiPrompts and ImageNet with Stable Diffusion. Numbers in the brackets indicate the FID
or CLIP Score difference compared with Stable Diffusion.

Method
MS-COCO ImageNet PartiPrompts

#IterationsFID↓ CLIP Score↑ FID↓ CLIP Score↑ CLIP Score↑
Before-finetuning [41] 13.42 29.88 27.62 27.07 29.78 -

SNR+1 [46] 13.92 29.96 27.56 27.03 29.86 80K
Trun-SNR [46] 13.93 29.95 27.60 27.05 29.85 80K
Min-SNR-γ [13] 13.92 29.93 27.59 27.02 29.87 80K
P2 Weighting [3] 13.23 29.93 26.92 26.44 29.50 80K
ANT-NashMTL [10] 13.39 29.81 27.41 26.99 29.90 80K
ANT-UW [10] 13.17 29.94 26.91 26.78 29.98 80K

DeMe (Before Merge) 12.78 (−0.64) 29.85 (−0.03) 26.36 (−1.26) 26.90 (−0.17) 30.02 (+0.24) 20K×4
DeMe (After Merge) 13.06 (−0.36) 30.11 (+0.23) 27.23 (−0.39) 27.09 (+0.02) 29.98 (+0.20) 20K×4

Table 3. Ablation study on CIFAR10. N denotes the number of
finetuned models.

N
Probabilistic

Sampling
Consistency

Loss
Channel-wise

Projection FID ↓

1 4.40
4.45

8
4.32
4.27
3.87

jection struggles to capture feature differences in the chan-
nel dimension without alleviating gradient conflicts. With
N set to 1 and Channel-wise projection applied, model
yields a worse results, with a FID of 4.45. In contrast,
with N set to 8 and Channel-wise projection applied ad-
ditionally, model yields the best results, with a FID of 3.87.
We posit that channel-wise projection struggles to capture
feature changes due to the significant differences across
the timesteps. (iii) Dividing overall timesteps into N non-
overlapping ranges effectively alleviates gradient conflicts,
resulting in a significant reduction in FID. For instance, with
N set to 8, introducing Probabilistic Sampling achieves a
0.08 FID reduction, while applying Consistency Loss yields
an additional 0.05 FID reduction. When all techniques are
applied during finetuning, a total FID reduction of 0.53 is
achieved. Our experimental results demonstrates that divid-
ing overall timestep into non-overlapping ranges serves as a
necessary condition. Building on this foundation, our train-
ing techniques significantly improve model performance.
Sensitive studies on influence of N and p have been con-
ducted in supplementary material, demonstrating that our
method is robust to variations in the choices of N and p.

5. Discussion
DeMe Enables Pretrained Model Escaping from the
Critical Point. We explore how DeMe can guide pre-

trained models to escape from critical points, leading to
further optimization. We refer to the approach of [9, 54],
visualizing the relationship between model parameters and
training loss by plotting the loss landscape. Fig. 4 presents
some visualization results on the training loss landscape that
support our claims. Two significant findings can be drawn
from Fig. 4: (i) The pretrained diffusion model has con-
verged when t ∈ [0, 1000), residing at the critical point with
sparse contour lines (i.e., no gradient). However, it is evi-
dent that the pretrained model is not at an optimal point,
as there are nearby points with lower training loss, suggest-
ing a potential direction for further optimization. (ii) For
different timestep ranges, the pretrained model tends to be
situated in regions with densely packed contour lines (i.e.,
larger gradient), suggesting that there exists an optimiza-
tion direction. For instance, when t ∈ [0, 250), the pre-
trained model stays at a point with frequent loss variations,
indicating a potential direction for lower training loss. The
decoupled training framework facilities the diffusion model
to optimize more efficiently. Based on the above observa-
tion, DeMe decouples the training process, enabling the pre-
trained model to move away from the critical point, result-
ing in further improvement.

Loss Landscape Visualization for Task Vectors. To
provide some intuitions, we visualize a two-dimensional
training loss representation when applying two task vectors
to merge finetuned models across various datasets, shown
in Fig. 6(a). We utilize pretrained model θ, two finetuned
model θi(i = 1, 2) to obtain two task vectors τi(i = 1, 2),
which span a plane in parameter space. We evaluate the
diffusion training loss on this plane, and there are three
key observations obtained from Fig. 6(a): (i) For both CI-
FAR10 and LSUN-Church, the training loss contours are
basin-shaped and none of the model parameters are opti-
mal, which means there exists a direction towards a better
model parameters. (ii) The weighted sum of task vectors τ
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Figure 6. (a): Loss landscape for applying task vectors. The optimal model parameters are neither the pretrained one nor the finetuned one,
but lie within the plane spanned by the task vectors computed in Sec. 3.3. We utilize the pretrained and two finetuned model parameters
to obtain the two task vectors, respectively. Following [9, 54], we compute an orthonormal basis from the plane spanned by the task
vectors. Axis denotes the movement direction in the parameter space. (b): Box plot of task vector distribution over different layers on
LSUN-Church. Task vectors exhibit notable value in t ∈ [500, 1000) but only slight value in t ∈ [0, 500).

(i.e., the interpolation of finetuned model parameters θi) can
yield parameters with a lower training loss. For instance, on
CIFAR10, the weighted sum of the task vectors can produce
optimal model parameters, outperforming the two individ-
ual finetuned model parameters. (iii) The loss variation is
relatively smooth, opening up the possibility to employ ad-
vanced search methods, such as evolutionary search, which
could serve as a potential avenue for further improvement.
In brief summary, the above observations indicate that by
applying a weighted sum to the task vectors, a more opti-
mal set of model parameters can be achieved, leading to a
lower training loss.

Task Vector Analysis. DeMe employs the model merge
technique to merge the multiple finetuned diffusion mod-
els by calculating the linear combination of task vectors in-
troduced in Equation 8. Here we visualize the task vec-
tors in Fig. 6(b), which shows significant differences be-
tween the task vectors in different timestep ranges. Specif-
ically, the magnitude of task vectors has a larger value for
t ∈ [500, 1000) and a smaller value for t ∈ [0, 500), indicat-
ing that there are more significant differences in parameters
for diffusion models finetuned for t ∈ [500, 1000). We sug-
gest this because the original SNR loss term [15] has lower
values in larger t. As a result, the original diffusion model
bias to the gradients in smaller t when larger t and smaller t
have conflicts in gradients, leading to poor optimization for
larger t. In contrast, DeMe decouples the training of diffu-

sion models across larger t and smaller t, allowing different
timestep ranges to be optimized separately. Hence, the dif-
fusion model finetuned on larger t exhibits a more signif-
icant difference compared with the original model, which
leads to better generalization quality.

6. Conclusion

Motivated by the observation that different timesteps in the
diffusion model training have low similarity in their gradi-
ents, this paper proposes DeMe, which decouples the train-
ing of diffusion models in different timesteps and merge the
finetuned diffusion models in parameter-space, thereby mit-
igating the negative impacts of gradient conflicts. Besides,
three simple but effective training techniques have been in-
troduced to facilitate the finetuning process, which preserve
the benefits of knowledge sharing in different timesteps.
Our experimental results on six datasets with both uncon-
ditional and text-to-image generation demonstrate that our
approach leads to substantial improvements in generation
quality without incurring additional computation or storage
costs during sampling. The effectiveness of DeMe may pro-
mote more research work on the optimization of diffusion
models. Additionally, the feasibility of combining task-
specific training with parameter-space merging presented in
this work may stimulate more research into diffusion model
merging, and can be potentially extended to general multi-
task learning scenarios.
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